Участвовать в лотерее — значит надеяться на фортуну. Здесь всегда можно рассуждать о непредсказуемости, воле небес и высокой степени случайности. В такой ситуации часто хочется опереться хоть на какие-то знания и иметь хотя бы небольшую предсказуемость в том, что касается возможности выиграть. На помощь чаще всего принято приглашать высшую математику, а именно понятие математического ожидания.
Проще всего рассказывать о нем на примерах. Этот термин пришел из теории вероятностей и он будет понятен всем, кто занимался изучением высшей математики. Благодаря математическим подсчетам можно получить результаты, которые не вполне очевидны с точки зрения математики. Получается так, что отчасти видимая случайность может регулироваться математическими законами. Математическое ожидание представляет собой расчет среднего значения случайной величины, т. е. в вакуумной абстрактной ситуации с помощью него допустимо просчитать вероятность. В частности, вероятность выигрыша. Однако в том, что касается лотереи, все не так однозначно.
Важно понимать: при том, что с помощью математических подсчетов можно легко прогнозировать события, в которых нет человеческого выбора, антропогенный фактор несколько меняет эту картину. И подходить к ней стоит с осторожностью. Планировать и совершать расчеты исходя лишь из теории вероятности — стоит крайне аккуратно. Рассчитать вероятность выпадения нужных чисел можно лишь в абстрактной, оторванной от реальности ситуации.
Один профессор математики из Америки, который является экспертом в теории вероятностей, иронизировал на тему того, что у теории вероятностей нет памяти. Это значит, что перспектива выиграть в лотерею у всех игроков примерно одинакова. Именно эта идея, как правило, обнадеживает всех участников подобных развлечений. Шансы выиграть есть всегда, при этом с помощью математического ожидания можно подсчитать — насколько они (не)велики. И хотя это не гарантия и несмотря на ограничения метода использования, с ним можно пробовать работать. Главное учитывать, что при любом количестве тренировок, невозможно будет предугадать, чем закончится игра в каждом конкретном случае.
Есть довольно распространенный пример, как в дополнение к математическому ожиданию в лотерее вмешивается человеческий фактор. Достаточно представить ситуацию, в которой человеку предлагают сыграть — причем это можно сделать только один раз — в лотерею. Есть два варианта на выбор.
- В первом — игроку гарантированно выплатят тысячу евро.
- Во втором — игрок с вероятностью в пятьдесят процентов выиграет две тысячи евро, еще сорок процентов того, что выплатят тысячу евро и есть десятипроцентная вероятность, что игрок останется ни с чем.
В первом варианте лотереи приз составляет тысячу евро, во втором — он больше — тысяча четыреста. При очевидной выгоде второго варианта, вряд ли кто-то будет сомневаться, что ощутимое число участников в эксперименте выберут вариант первый — менее прибыльный, зато гарантированно надежный. Именно поэтому теоретические рассуждения далеко не всегда будут иметь непосредственную корреляцию с практическим выводом и принятым решением.
Математическое ожидание используется также в других видах игр со случайными числами. Речь идет о всех разновидностях со стратегической составляющей, где несмотря на наличие случайного распределения на результат в большей степени влияет все же тактика игрока. Математическое ожидание в таких играх как раз позволяет грамотно «управлять случайностью», но не становится основным инструментом.
Если суммировать вышеизложенную информацию, то можно сделать вывод: математическая вероятность является одним из факторов вероятной победы или проигрыша в лотерее, однако одна лишь она не может становиться решающим козырем для игрока, поскольку еще более важны другие факторы, отчасти — случайности, отчасти — маркетинговой стратегии той или иной компании, занимающейся лотереями.